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THE CENTROID AND INERTIA TENSOR

FOR A SPHERICAL TRIANGLE

by

John E. Brock

Professor of I'fechanlcal Engineering, NPS

The list of formulas for inertia tensors given by E. A. Ililne

in his textbook Vectorial Mechanics ( Inters cience, 19^3) includes many

of the fundamental mass distributions which are useful in practice.

About twenty years ago the writer thought it would be interesting to add

to this list a formula for the case of uniform mass distribution on tne

surface of a general spherical triangle, but other occupations have pre-

vented his completing this task until quite recently.

a very brief note, giving the formula for the inertia tenser

and also the formula locating the mass center, has been submitted for

publication in a standard journal so as to make the results widely avail-

able. However, even though the derivations are straightforward, the view-

point and enough of the details are sufficiently complicated to v/arrant

their preservation and it is the purpose of this brief monograph to do

this.

We are concerned with a uniform mass distribution over the

spherical triangle T:ABC (cf. Figure 1) which lies on the surface of a

sphere having radius r and center 0. Triangle T is specified by vectors

a, o, and c such that ra = OA, rb = OB, and re = OC. We are also given

either LI, the total mass, or m, the mass per unit area. Without ultimate

loss of generality we take r = 1 and require that each of the angles
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A = angle(BOC), B = angle(COA), and C = angle (AOB), respectively, not

exceed tt/2. This assures a projection property we will use and also that

a*bxc > 0. Let the letters A, 3, and C also denote the vertex angles of

T at A, B, and C. respectively. Also, introduce the following notations:

a = a»b*c

5 = b*c/a, 3 = c*a/o, y = axb/a

X = b»c, \i = c # a, v = a»b

C = /l-X 2
, n = /l-u

2
, 9 = /l-v2

Note that

|S| = c/a, |B| = n/a, |y| = 0/a

and also recall the elementary results

a
2 = 1 - X

2 - y
2 - v

2
+ 2Xyv

U a aa + b3 + cy

(We use script letters to denote dyadics; U denotes tne unit dyadic.)

Our general procedure in determining a desired tensor A or

vector v will be by use of the formulas

A = A»U = (A»a)a + (A-b)3 + (A-c)y

v = v»U = (v»a)ci + (v»b)3 + (v*c)y

and to determine the dot-product A>c or v-c, By a cyclical interchange

of parameters, the other dot-products may easily be determined, thus

establishing the desired result.

In this orocedure we will deal with the projection of T into

a plane figure T' lying in the plane II which passes through perpen-

dicular to c. Trie dyadic which performs this operation is

P = U - cc





Arc AB is part of the great circle K whose normal is in the

direction of y. It projects into the ellipse E in II. The "node" M

is at unit distance from and in the direction of

p = cx(axo) = Aa - ub = pm

where m is the unit vector OTT and the magnitude of p is

p = /A 2 + u
2 - 2Auv

We also note that

>

2 = p
2 + a

2

Let A 1 and B' be the projections of A and B, respectively,

and let the unit vectors a' along OA 1 and b* along OB' be defined by

the relations

OA' = P»a = a - uc = na' , 0B T = P-b = b - Ac = <;b'

Although we note that

sin C = c«a'xb' = a/iu

we can also use

cos C = a'^b' = (v-Au)/nc

to determine C without ambiguity. Similar formulas determine vertex

angles A and B.

We will let P be a general point of T, let r denote the (-unit)

vector OP, and let <f> denote the angle COP. If do is an areal element of

T, its projection on H is the areal element

dS' = do cos (>

of the figure T 1 which is bounded by straight lines OA' and OB' and by a

portion of the ellipse E whose semi-major axis is unity and whose semi-

minor axis is c*ya/0 = a/9. Accordingly, by measuring a pola" angle i|»

from "nodal" line OH, the polar equation of E may be determined to be





R2 a
2 /(a 2 + p

2 sin2
^)

It will be useful to establish the relations summarized

in Table 1, below. (Cf. the drawing of figure T' shown in Figure 2.)

In particular we calculate

cos i^j = m«a' ; cos ij>

2
= m*b' ; cos(ITDA) = m»a; cosC'DB) = m»b

TABLE 1 Angles and their function.';

Symbol Descriotion Sine Cosine

A Vertex at a/ne (X-yv)/n0

B Vertex at B a/G^ (y-vX)/6C

C Vertex at C a/cn (v-Xy)An

*i MDA 1 yo/pn (X-yv)/pn

*2 WB 1 Xo/vt, _(y-vX)/pC

- IOA p3/p (X-uv)/p

— r>DB xe/p -(y-vX)/p

The area of T is

3-/ qii
T
,sec dS' =

R
p do

d9
/1-p'T

[1 - sin 'V»
/(e/p) 2 -cos 2

0] dijj

r i
/^ COS iK-, 2

= L0- arccosO g—^)J^

= (i/> -ij; ) - arccos(-cos A) + arccos(cos B)

= c - (tt- 13) + A = A + B + C - tt = e

where we have used the symbol e to denote the "spherical excess."

This result is, of course, very well known and the purpose of making

the calculation here is simply to indicate the metnod of integration

which will be used to establish other useful results.

Vie will next locate the mass center G of the distribution

by evaluating the vector





OG = g = ? |
r &S = (g»a)a + (g«b)3 + (g-c)Y

T

Therefore

bc«g = c»r dS =

T
cos <(> dS =

Jrpt

r<f»
2

rR rit

V o

p dp dij; =
j

K>, 2* d^2
R2 d*-srr 2—

ij> Jty 8
2 sin z

iJ> + a
z cos>

= (c/2G){arctan[(G/a) tan £],

= (a/28) [angle(MB) - angle (MQA)] = oC/28

Sir.iilar results may be obtained for a g and b g, and upon removing the

restriction r = 1, we obtain

s = (r/2e)[
|fi

£ + w + m 2
]

where the symbol (^) indicates that the term is to be obtained by

the cyclic interchange a ->• b -> c and A '* B -> C.

Again temporarily assuming r = 1, we note that the definition

of the tensor of inertia, at 0, of this mass distribution, is

I = ra (U-rr) dS
T

and it is clear that only the second term imposes any difficulty. Write

J =
«i T

Now

r = U»r = (P+cc)'r = r' + c cos §

where the vector r' lies in the plane II . Thus

J*c = c*rr d3 = (cos cj))(r' + c cos q>) do

T •'T

f

r' d3' + c

T'

cos
<t>

dS' = J j + cJ,

where tne meanings of tne symbolds J
l
and J 2 are evident. Vie first

evaluate tne scalar J
z .

J
2

•

ft? r

i;

cos
<J>

dS' =

T ! J
*i

J

'l-p
2

p dp d^





J - 4
2
[1-(1-R2

)
3/2

J <ty = 4
2

{1 - [(9/p)
2 -co3 2

i>]-
3/2

3in 3^
1 ^2

= _[^ _ apR(co3 tp)/0
2 - arccos(gcos ^)]

= [e + a(X+u)(l-v)/Q 2
]/3

Before proceding farther we establish the unit vector

n = cm = [(y-vX)a + (X-uv)b - p
2
c]/ptf

which lies in plane II perpendicular to m. We evidently have

r 1 = o(m cos ^ + n sin i>)

so tnat

J =
i

^
j

*i

2 — —
(m cos ^ + n cos ip)

R

p
2 dp dip

r*2 ,_

fl

(ra cos rp + n sin ^) R dip

a

3p
m

r]P2 p cosip d'ji

^ (a
2+P

2 3in^) 3/2 + Fl

'^
2 n sin j> d\j)

(e
z -p z cos

2
^)

2,,,\ 3/2

= (o/3G
2 )[(m6 2 sin qi - na 2 cos y)//a 2

+p
2 sin ip]

2

= [nb(X-u) + n(a/Q) 2 (X+y)(l-v)J/3p

= [a+b-(X+y)c]/3(l+v)

Tnus we have

c»J = a(a+b)/3(i+v) + ce/3

and

J = eU/3 + [^±2l^i + oo + M 2
]/3

l+a • o

Thus, finally, we arrive at the desired result

I = (Z-Ir
2 /3){U - C(a+b)(ax5)/(l+a*B) + (M + (^)

2
]/2e}

in which we nave also accounted for non-unit value of r.

We have removed the original restriction, introduced for convenience,

that r = 1, but our analysis thus far has been limited to the case where

none of the arcs bounding T exceeds tt/2. We now proceed to remove this

restriction. We consider the composition of two triangles, each satis-

7





the condition (so that the formulas for S, for g, and for I given above

are valid) and which, when juxtaposed, form a larger

spherical triangle; cf. Figure 3 where C lies on the

great circular arc BD. Suppose that the theorems

hold for T:ABC and T*:ACD. We shall show that they

also hold for T:ADD. First consider the areas.

S = S+S* = r
2
[(A+B+C-7T) + (A*+C*+D*-7T)] = r2 (A+3+D-iT)

since

A+A* = A; B = B, D* = D, and C+C* = tt.

For the centroid we have

Figure 3

2eg/r = 2(eg + e*g*)/r = (v . + v. + v ) + (\? + v. + v, )
ao be ac cd da ;

where

— — r- _ —

"ab

Clearly

and also

v + v =
ca ac

v, + v ,
= v, ,

be cd bd

since these vectors are collinear (perpendicular to the plane OBCD) and

angle (BOC) + angle (COD) = angle (BOD)

Thus

2eg/r = v . + v. , + v

,

^ ab bd da

and the result is proved.

For the inertia tensor, introduce the notation

Then

K . = (a+u)(a*b)/(l+a'b), etc.
ao

7 =7 + 7*
* o * o ~ * o

- (mrV3)[(2Ue-K H-Kh -K J + (2Ue*-JC -K .-K.J]
ab be ca ac cd da'





(mrV3)(2Ue - K K - fC , - K,„ + E)
ab bd da

and v/e will show that

£ Sd " So •• K
ca ac cd

vanishes. Obviously

K + K = 0.
ca ac

Thus, consider

Sd-K
_ (b+d)(bxd) (b+c)(bxc) (c+d)(c*d)

be cd 1+b'd l+b«c 1+c-d

r (b+d) sin(BOD) _ (b+c) sin(BQC) _ (c+d) sin (COD) ,-

1 + cos (BOD) ' 1 + cos(BOC) '

1 + cos (COD)

where e is a unit vector perpendicular to the plane OBCD. The vectors

appearing in the bracketed expression all lie in this plane and it is

not difficult to show that the bracketed expression is zero, so that the

result is proved.

That is, if the theorems are true for T and T* and if T - T+T* is

a spherical triangle, then the theorems are true for T.

Next, we deal with the case of tv/o spherical triangles T and T*

which are complementary on a lune (the figure formed by two intersecting

great circles; see Figure 4.) There is no difficulty ^

in showing that

S
T

= 2r2
C

Li

S g = m7rr
3sin(C/2)

I = (2mrV3)[2CU - (mm - nri) sin C]

where in, n, and c are mutually perpendicular'

unit vectors with c along the line joining

the cusps of the lune and m through the center

of the lune as shown in Figure 4. These results are of some interest in

themselves. Then, using these results, we can show (but we do not give





the proofs here) that if T and T* are complementary on the lune L, and

if the theorems hold for T, then they also hold for T*.

We are now in a position to complete the argument. The three great

circle, arcs of wnich bound the given triangle T, cut the surface of the

sphere into eight spherical triangles. There is

no difficulty in seeing that there is at least

one of these triangles which has two sides whose

subtended angles (at the center of the sphere)

do not exceed tt/2. Denote this triangle as T .

If the third side of T, subtends a central
i Figure 5

angle greater than tt/2, divide Tj into two

subtriangles by an arc of a convenient but arbitrary great circle. At

least one of these subtriangles will satisfy the conditions for the

theorems

.

Thus, the theorems are true for triangle T 1# Pairwise, T
x
+ T

2 ,

Tj-K^, Tj+T* form lunes. Thus the theorems are true for T2 , T 3 , and T„.

Pairwise T +T c , T +T . and T +T form lunes. Thus the theorems are true25*36* i< 7

for T , T , and T . Lastly, T +T forms a lune, so that the theorems are

true for T
e

.

But the given triangle is one of the eight triangles T , . .
.

, T .

Thus the theorems are true for the given triangle.

For definiteness, we repeat the statements of the theorems.

S = r 2
e = r

2 (A + B + C - Tr)

g = (r/2e)[
1
r-='

l

C + ,rr-r. A + —— B j

|axb| |bxc| |o<a|

I = (2 ^2/3){U -
[(5+b)(axb)

+
(H-c)(b*c) +

(c+a)(cxrp
-j /?e )

l+a*b 1+u'c l+c»a

10





It Ghould be remarked that specification of radius r, unit

vectors a, b, and c, and cyclic order (ABC) does not uniquely specify

a spherical triangle since there are two arcs AB, two arcs BC, and

two arcs CA. Tnus, additionally, qualitative information is needed

to select the proper case. Vertex angles A, B, and C may be deter-

mined by use of this qualitative information and such formulas as

sin2 A = (a'b*c)
2
/[l-(c-a)

2
][l-(a-b)

2
]

Central angles A, B, and C may be determined by use of this quali-

tative information and such formulas as

cos A = b«c

11





INITIAL DISTRIBUTION LIST

Professor C. Comstock, Code 53Zk
Naval Postgraduate School
Monterey, California 939^0

Professor P. G. Hodge, Jr.
107 Aeronautical Engr. Bldg.
University of Minnesota
Minneapolis, MN 55^55

CDR Ha Ngoc Luong, Vietnamese Navy
220/158/13 Truong Minh Giang
Saigon 3, South Viet Nam

LCDR Vo Thanh Tarn, Vietnamese Navy
SMC 1465
Naval Postgraduate School
Monterey, California 939^0

Library
Naval Postgradiate School
Monterey, California 939^0

Dean of Research
Naval Postgraduate School
Monterey, California 939^0

Director
Defense Documentation Center
5010 Duke Street
Alexandria, Virginia 2231^

Department of Mechanical Engineering (Code 59)
Naval Postgraduate School
Monterey, California 939^0

Professor John E. Brock (Code 59Bc)
Department of Mechanical Engineering
Naval Postgraduate School
Monterey, California 939^0

12





U 164247



DmmZZZTy RESEARCH sports

5 6853 01060333 5


